37 research outputs found

    On the efficient representation and execution of deep acoustic models

    Full text link
    In this paper we present a simple and computationally efficient quantization scheme that enables us to reduce the resolution of the parameters of a neural network from 32-bit floating point values to 8-bit integer values. The proposed quantization scheme leads to significant memory savings and enables the use of optimized hardware instructions for integer arithmetic, thus significantly reducing the cost of inference. Finally, we propose a "quantization aware" training process that applies the proposed scheme during network training and find that it allows us to recover most of the loss in accuracy introduced by quantization. We validate the proposed techniques by applying them to a long short-term memory-based acoustic model on an open-ended large vocabulary speech recognition task.Comment: Accepted conference paper: "The Annual Conference of the International Speech Communication Association (Interspeech), 2016

    On the Compression of Recurrent Neural Networks with an Application to LVCSR acoustic modeling for Embedded Speech Recognition

    Full text link
    We study the problem of compressing recurrent neural networks (RNNs). In particular, we focus on the compression of RNN acoustic models, which are motivated by the goal of building compact and accurate speech recognition systems which can be run efficiently on mobile devices. In this work, we present a technique for general recurrent model compression that jointly compresses both recurrent and non-recurrent inter-layer weight matrices. We find that the proposed technique allows us to reduce the size of our Long Short-Term Memory (LSTM) acoustic model to a third of its original size with negligible loss in accuracy.Comment: Accepted in ICASSP 201

    On the Choice of Modeling Unit for Sequence-to-Sequence Speech Recognition

    Full text link
    In conventional speech recognition, phoneme-based models outperform grapheme-based models for non-phonetic languages such as English. The performance gap between the two typically reduces as the amount of training data is increased. In this work, we examine the impact of the choice of modeling unit for attention-based encoder-decoder models. We conduct experiments on the LibriSpeech 100hr, 460hr, and 960hr tasks, using various target units (phoneme, grapheme, and word-piece); across all tasks, we find that grapheme or word-piece models consistently outperform phoneme-based models, even though they are evaluated without a lexicon or an external language model. We also investigate model complementarity: we find that we can improve WERs by up to 9% relative by rescoring N-best lists generated from a strong word-piece based baseline with either the phoneme or the grapheme model. Rescoring an N-best list generated by the phonemic system, however, provides limited improvements. Further analysis shows that the word-piece-based models produce more diverse N-best hypotheses, and thus lower oracle WERs, than phonemic models.Comment: To appear in the proceedings of INTERSPEECH 201

    Improving the Performance of Online Neural Transducer Models

    Full text link
    Having a sequence-to-sequence model which can operate in an online fashion is important for streaming applications such as Voice Search. Neural transducer is a streaming sequence-to-sequence model, but has shown a significant degradation in performance compared to non-streaming models such as Listen, Attend and Spell (LAS). In this paper, we present various improvements to NT. Specifically, we look at increasing the window over which NT computes attention, mainly by looking backwards in time so the model still remains online. In addition, we explore initializing a NT model from a LAS-trained model so that it is guided with a better alignment. Finally, we explore including stronger language models such as using wordpiece models, and applying an external LM during the beam search. On a Voice Search task, we find with these improvements we can get NT to match the performance of LAS

    A Comparison of Semi-Supervised Learning Techniques for Streaming ASR at Scale

    Full text link
    Unpaired text and audio injection have emerged as dominant methods for improving ASR performance in the absence of a large labeled corpus. However, little guidance exists on deploying these methods to improve production ASR systems that are trained on very large supervised corpora and with realistic requirements like a constrained model size and CPU budget, streaming capability, and a rich lattice for rescoring and for downstream NLU tasks. In this work, we compare three state-of-the-art semi-supervised methods encompassing both unpaired text and audio as well as several of their combinations in a controlled setting using joint training. We find that in our setting these methods offer many improvements beyond raw WER, including substantial gains in tail-word WER, decoder computation during inference, and lattice density
    corecore